
The low-cost bCPAP device combines room air with oxygen and delivers it to the baby’s nose. The tubing carrying the oxygen ends submerged in water, which creates the pressures in the system and makes bubbles when the air comes out. The bubbles create a vibration that helps to keep the lungs open and working better. (Photo: PATH)
Each year, hundreds of thousands of babies born prematurely in low- and middle-income countries die because medical facilities there cannot afford the equipment that could help babies survive those crucial first few weeks after birth.
Many of these deaths are caused by respiratory distress syndrome.
In sub-Saharan Africa alone, some 6 million preterm babies are born every year with immature lungs. Their lungs aren’t fully developed, and they have trouble staying inflated, so they collapse. While medical institutions in high-income countries have bubble continuous positive airway pressure machines to help them breathe, those bCPAP units cost thousands of dollars—making them prohibitively expensive for many low-income nations. Of those 6 million babies, 800,000 of them are born at mid-level facilities that require bCPAP devices but likely don’t have them.
The bCPAP devices keep the lungs from deflating and also deliver blended oxygen into them—a critical step because breathing 100% oxygen can cause blindness in premature babies.
Medical providers in some low-resource countries use improvised bCPAP kits assembled from parts they already have in their clinics and use them to help preterm babies survive. However, these kits do not have the ability to provide blended oxygen for babies.
Read full post »