Research

All Articles in the Category ‘Research’

Seattle Children’s Research Featured in Worldwide Study on COVID-19 Vaccine Safety in Young Children

New findings from Seattle Children’s Research Institute’s Center for Clinical and Translational Research reveal that a three-dose primary series of Pfizer’s COVID-19 vaccine was safe and effective in children 6 months to 4 years of age, even when a new variant (Omicron) was circulating.

The findings were released on Feb. 16 in the New England Journal of Medicine by an international team conducting the study, including Seattle Children’s lead study investigator, Dr. Janet Englund.

Read full post »

Partnering with Biotechs to Save Lives

Dr. David Rawlings, director of Seattle Children’s Center for Immunity and Immunotherapies and a scientific co-founder of GentiBio

Biotechnology start-up GentiBio — a Seattle Children’s Research Institute spin-out — announced a multi-year collaboration with global pharmaceutical company Bristol Myers Squibb, the latest success story in the research institute’s rapid development of therapies and technologies that change children’s lives. Spin-off companies and biotechnology/pharmaceutical industry collaborations are a critical part of accelerating and expanding the reach of these innovations. 

GentiBio is collaborating with Bristol Myers Squibb to develop new engineered regulatory T cell (Treg) therapies to re-establish immune tolerance and repair tissue in patients living with inflammatory bowel diseases, which cause debilitating and life-threatening chronic inflammation of the gastrointestinal tract. Current therapies are largely focused on systemic anti-inflammatories and broad immunosuppression, which can cause adverse effects and are not curative.  

Read full post »

PedAL Initiative ‘Dares’ to Transform Treatment and Care for Kids with Blood Cancer

PedAL leadership left to right: E. Anders Kolb, Gwen Nichols, Samuel L. Volchenboum, Laura Di Laurenzio, Soheil Meshinchi, Todd Cooper

The PedAL (Pediatric Acute Leukemia) Master Trial is part of the Leukemia & Lymphoma Society’s Dare to Dream Project with one of Seattle Children’s doctors leading the clinical trials for pediatric acute leukemia.

 

For children battling through a diagnosis of relapsed leukemia, moving away from standard chemotherapy and onto newer, safer treatments is something many families are hopeful for.

Seattle Children’s is actively working to identify, validate and innovate how children with pediatric acute leukemia, including acute myeloid leukemia and other high-risk leukemias, are treated through a collaborative master screening clinical trial led by The Leukemia & Lymphoma Society (LLS) called Pediatric Acute Leukemia (PedAL).

Read full post »

No Stone Unturned: Seattle Children’s High-Risk Leukemia Experts Specialize in the Toughest Cases

Josh, Harper and Meagan in June 2022

Two years ago, Meagan stood in a hospital room at Seattle Children’s cradling her 1-year-old daughter, Harper, against her chest. Her fiancé, Josh, huddled close to them and kissed the thinning hair on top of their baby’s head.

A feeding tube was routed through Harper’s nose and her eyes were brimming with tears. Exhausted, she snuggled into her mom’s arms as a photographer took their picture.

Meagan and Josh feared those would be the last photos taken of their baby girl.

Read full post »

Seattle Children’s Research Institute Creating ‘On-ramp to Biotech’ for Early Career Scientists

Drs. Alison Williams and Eric Nealy are helping to build a program at Seattle Children’s Research Institute for early career scientists who have historically been excluded from or underrepresented in biotech.

Seattle Children’s Research Institute today announced the Invent at Seattle Children’s Postdoctoral Scholars Program, a $45 million investment in training early career scientists historically underrepresented in biotech in the development of therapeutics for childhood conditions. Seattle Children’s has pledged to raise an additional $10 million for the program.

“We want to create an on-ramp to the biotech sector for people who have traditionally not had that opportunity,” said Dr. Jim Olson, program director. Read full post »

A Low-Cost Device That Could Help Hundreds of Thousands of Preterm Babies in Low-Income Countries Breathe and Survive

A doll with medical tubes going into its nose.

The low-cost bCPAP device combines room air with oxygen and delivers it to the baby’s nose. The tubing carrying the oxygen ends submerged in water, which creates the pressures in the system and makes bubbles when the air comes out. The bubbles create a vibration that helps to keep the lungs open and working better. (Photo: PATH)

Each year, hundreds of thousands of babies born prematurely in low- and middle-income countries die because medical facilities there cannot afford the equipment that could help babies survive those crucial first few weeks after birth.

Many of these deaths are caused by respiratory distress syndrome.

In sub-Saharan Africa alone, some 6 million preterm babies are born every year with immature lungs. Their lungs aren’t fully developed, and they have trouble staying inflated, so they collapse. While medical institutions in high-income countries have bubble continuous positive airway pressure machines to help them breathe, those bCPAP units cost thousands of dollars—making them prohibitively expensive for many low-income nations. Of those 6 million babies, 800,000 of them are born at mid-level facilities that require bCPAP devices but likely don’t have them.

The bCPAP devices keep the lungs from deflating and also deliver blended oxygen into them—a critical step because breathing 100% oxygen can cause blindness in premature babies.

Medical providers in some low-resource countries use improvised bCPAP kits assembled from parts they already have in their clinics and use them to help preterm babies survive. However, these kits do not have the ability to provide blended oxygen for babies.

Read full post »

Cutting-Edge Clinical Trials for Alagille Syndrome Help Families Find Relief from Rare Condition

A woman leaning down holding a young girl on a path in a park.

Amanda and her daughter, Amelia, have both been treated at Seattle Children’s for Alagille syndrome.

When Amanda Thorlacius found out she was pregnant with a little girl, she was overjoyed. But she wondered if her daughter would inherit the same genetic condition that robbed her of a normal childhood.

“Give me all the diseases in the world, but don’t give Alagille syndrome to my children,” Amanda said.

Alagille syndrome (ALGS) is a rare, inherited condition in which children may have too few bile ducts in the liver. This causes problems with the way bile moves and makes it hard for the body to remove toxins.

Read full post »

Seattle Children’s Welcomes Dr. Burt Yaszay as Chief of Orthopedics and Sports Medicine

A man with a goatee smiling and wearing a lab coat and a shirt and tie.

Dr. Burt Yaszay is the new chief of Orthopedics and Sports Medicine at Seattle Children’s.

Seattle Children’s is excited to welcome Dr. Burt Yaszay as the new chief of Orthopedics and Sports Medicine at Seattle Children’s. Yaszay comes to Seattle Children’s with a bright vision for the future as well as a deep respect for the roots in which Seattle Children’s was founded.

We sat down with Yaszay to learn more about his extensive expertise and vision for the program.

Yaszay earned his medical degree at Stanford University School of Medicine and did his residency in general and orthopedic surgery at the University of Washington and a fellowship at NYU Hospital for Joint Diseases. Yaszay most recently spent 14 years at Rady Children’s Hospital in San Diego, which is nationally recognized as one of the best programs in the country.

He is excited to bring his expertise to Seattle Children’s and foster an environment of innovation and collaboration.

Read full post »

Improving Hypospadias Outcomes Through Novel Research

A man wearing a suit and tie smiling.

Dr. Nicolas Fernandez, pediatric urologist at Seattle Children’s

Hypospadias (pronounced hype-oh-spay-dee-us) is a birth defect where the opening of the urethra, the tube that carries urine from the bladder to the outside of the body, is not located at the tip of the penis. Depending on the severity of the condition, it can affect the penile function and one’s self-perception. It is a common condition that can be treated with surgery in some cases; however, a decision to proceed with surgery needs to be carefully thought through and discussed among the provider, parents and patients.

The current standard treatment for hypospadias starts with the provider defining the severity of the condition. The severity is based on the location of the urethral meatus, the external opening of the urethra, and the penile curvature. Based on the severity,  some patients may be offered surgery as a next step. Surgery involves using local tissue from one part of the patient’s body to relocate the urethral opening to the correct position at the tip of the penis. To date, assessment of the tissue is subjective, and therefore, it is hard for surgeons to repeat the process moving forward.

Dr. Nicolas Fernandez, a pediatric urologist at Seattle Children’s and surgeon scientist at the University of Washington, is working on a research project that aims to reduce this subjectivity and explore new approaches to better assess structural and genetic components of the tissue used for surgery. He is doing so by proposing a novel approach to evaluate hypospadias.

By using technology to detect small genetic differences that can lead to big changes in an individual’s physical characteristics and by applying artificial intelligence on patients with hypospadias, providers can improve clustering of individuals with similar characteristics to ensure a more accurate prediction for treatment and surgery for this condition. This ultimately leads to better, more impactful outcomes for the patient and family.

Dr. Fernandez spoke with On the Pulse about his research.

Read full post »

Seattle Children’s Researchers Discover that Nanobodies Could Pack the Biggest Punch Against COVID-19 Variants and Resurgence

Capralogics

When the worst pandemic of the century struck, a group of nine Seattle Children’s Research Institute’s scientists teamed up with researchers from Rockefeller University to innovate powerful tools for diagnosing and treating a virus that has claimed over 5 million lives.

In a recent study published in E-life, scientists from Seattle Children’s Aitchison, Sather, Myler and Debley labs, in collaboration with Rockefeller University’s Chait, Rout and Bieniasz labs, demonstrate how a unique group of antibodies, known as nanobodies, could become an exceptional resource for superior COVID-19 protective and therapeutic interventions, as well as bring hope for effective treatment of diseases most commonly found in low-resource countries.

Antibodies are produced by our bodies as a protective response to bacteria, viruses and foreign substances in our blood. Nanobodies are fragments of antibodies produced by llamas and other members of the camelid family. Nanobodies are ten times smaller than human antibodies, they are remarkably robust and they are readily “humanized” for use in diagnostic and therapeutic treatments. Nanobodies bind to viral-producing antigens in places not accessible to human antibodies and are considerably more thermo-resistant. Read full post »